Featured image The Cora Ball, developed by the nonprofit Rozalia Project, can be dropped inside a washing machine to snag free-floating microfibers before they go down the drain. It is claimed to be 26 percent effective.Photo Courtesy Rozalia Project
This article is a re-print of the article posted on NewsDeeply by Mary Catherine O’Connor
Check out that site for many, many great articles on timely topics.
(REPRINT from original) IN 2013, ECOLOGIST Mark Anthony Browne presented the results of some unsettling research to leaders from a handful of major apparel brands, including Nike, Polartec (a major supplier of polyester fleece) and Patagonia. Browne had published a report that implicated synthetic apparel as a possible source of microplastic pollution. Browne wanted the companies to fund research to evaluate how and why apparel sheds fibers, in order to mitigate the action, perhaps by redesigning textile processing or sourcing different material. They all declined except for clothier Eileen Fisher, which provided Browne with a small seed grant. The others said it was too early. They wanted a larger scientific consensus that their products were sources of plastic pollution.
In the years since Browne first approached the apparel industry, numerous additional studies have shown that synthetic microfibers shed by clothing and other manufactured products are being ingested by fish and shellfish, and can be found in food, drinks and even air. It’s still unclear whether microfibers pose a real threat to the health of humans or other living things. Yet, under the specter that they might, academic, nonprofit and apparel industry scientists have started to look at ways to stem the flow of microfibers into the environment.
Solutions to Shedding
One approach to reducing the release of microfibers into the environment revolves around altering textiles to make them less likely to shed fibers into the environment during everyday use or into water when they are washed.
Several years ago the European Union funded a three-year, €1.2 million project known as Mermaids that involved a consortium of European textile experts and researchers along with the anti-plastic pollution group Plastic Soup Foundation. In May 2017, Mermaids issued a detailed report recommending changes in manufacturing synthetic textiles, including using coatings designed to reduce fiber loss. Thus far, no manufacturers have announced initiatives to test any of the report’s findings or suggestions.
Before committing resources to testing new manufacturing methods aimed at reducing shedding, representatives of the apparel industry say they want to figure out how much different kinds of fabrics shed so they can appropriately target efforts to reduce microfiber pollution. And that’s a sticking point right now.
Some studies have sought to determine which fabrics shed the most. But parsing and identifying the exact types of plastics, especially microscopic fibers, found in environmental samples is difficult and requires expensive equipment that many researchers can’t access.
In early 2017, the Vancouver Aquarium, through its Coastal Ocean Research Institute (CORI), announced that it was launching a comprehensive microfiber study with the hope of eventually being able to trace microfibers found in the environment back to the specific brand and article of clothing from which they were shed. Funding for the project includes a $38,000 grant from Mountain Equipment Co-op as well as undisclosed sums from outdoor brands Arc’Teryx, Patagonia and REI.
Each of the retailers provided CORI Executive Director Peter Ross with samples of synthetic garments of various polymers, such as polyester and nylon, from their respective product lines. Ross and his team are running swatches of each sample through a battery of 90-day tests to see how they hold up to exposure to the elements. One set is placed in open air, where the swatches are exposed to wind, precipitation, temperature and humidity variations. One set is submerged in the bay water outside the aquarium, and exposed to biofouling, seawater, temperature variations, currents and aquatic life. A third set is submerged in fresh water.
The group is also using an infrared spectrometer to determine the unique infrared “signature” of each fabric sample based on the unique mix of dyes and additives, and cataloguing signatures both of intact samples and samples that have been through the exposure experiments. The hypothesis is that weathering in these various conditions will give the polymers characteristic signs of degradation, thereby changing their infrared signature in predictable ways.
One project goal is “to help us better understand how these fibers change over time with weathering,” explains Ross. Another is to create a spectral library that in the future can be used to identify the source (brand and apparel type) of microfibers collected from the environment.
“Having over 100 samples gives a great opportunity to look at a wide range of blends, different synthetic materials, weaves and designs,” says Ross. “And with the weathering studies, it’s going to create a really nifty study and database that will put us in a much better position to understand what’s going on with environmental samples.”
Katy Stevens, sustainability project manager for the outdoor gear industry consortium European Outdoor Group (EOG), is encouraging the textile industry to lead research on fiber loss, contending it is better suited than marine scientists to study textiles. She suggests the industry establish protocols for quantifying fiber loss from particular synthetic fabrics, then set standards aimed at keeping fiber loss to a minimum through changes to fabric manufacturing or construction.
The American Association of Textile Chemists and Colorists (AATCC) and ASTMInternational are involved in a standards-setting effort with EOG aimed at being able to pinpoint just how much fiber any given fabric or blend of fabrics will release in washing machines. Stevens says the EOG will work with the International Organization for Standardization (ISO), which most European brands use, to ensure compatibility so that textiles can be tested to a consistent set of protocols globally. The goal is to get a clearer understanding of exactly how apparel is contributing to microfiber pollution.
“Is washing even the biggest leakage point? We don’t know,” says Heather Shields, chair of a microfiber working group for AATCC. “If you’re wearing a backpack every day, how is that going to shed fibers from your fleece jacket?”
Once apparel makers know which fabrics are the worst shedders, the next step is to experiment with new approaches to yarn and fabric construction.
“[Shedding] has to do with the yarn twist. It has to do with the yarn fiber length, the fiber type, the yarn type as well as fabric density,” says Jeffrey Silberman, professor and chairperson of textile development and marketing with the Fashion Institute of Technology at the State University of New York. “There are a million different things that go into whether a fiber is going to [shed from] that fabric.” But, changes to the twist or using a different fabric content has a cascade of other impacts. “It affects the aesthetic, the performance, the cost of the product. It’s a humongous problem,” Silberman says.
Apparel brands Vaude, Adidas and Polartec and WWF Germany are among the organizations that have embarked on a research program called Textile Mission, backed by a €1.7 million grant from Germany’s Federal Ministry of Education and Research. For the three-year project, the partners are contributing material and subject expertise toward collaboratively developing new fabrics and technologies that will reduce microfiber pollution, but are also “practical and feasible and scalable within the regular outdoor and sports supply chains,” says Hilke Patzwall, Vaude’s senior manager of corporate social responsibility.
Biodegradable Fibers
Another approach to reducing microfiber pollution could be to substitute biodegradable fabrics for the durable plastics used in most synthetic textiles today.
Vaude is testing biodegradable fibers. It is already using Tencel, a brand of lyocellcellulosic (wood-derived) polymer, in place of petroleum-based polymers in some of its products. According to Tencel manufacturer Lenzing, the fabric has been certified as biodegradable in seawater, based on a series of ASTM testing standards.
Mango Materials, a Berkeley, California-based startup, has been developing a
Very informative article but it seems like it got cut off at the end.